Causal inference is the process of using assumptions, study designs, and estimation strategies to draw conclusions about the causal relationships between variables based on data. This allows researchers to better understand the underlying mechanisms at work in complex systems and make more informed decisions. In many settings, we may not fully observe all the confounders that affect both the treatment and outcome variables, complicating the estimation of causal effects. To address this problem, a growing literature in both causal inference and machine learning proposes to use Instrumental Variables (IV). This paper serves as the first effort to systematically and comprehensively introduce and discuss the IV methods and their applications in both causal inference and machine learning. First, we provide the formal definition of IVs and discuss the identification problem of IV regression methods under different assumptions. Second, we categorize the existing work on IV methods into three streams according to the focus on the proposed methods, including two-stage least squares with IVs, control function with IVs, and evaluation of IVs. For each stream, we present both the classical causal inference methods, and recent developments in the machine learning literature. Then, we introduce a variety of applications of IV methods in real-world scenarios and provide a summary of the available datasets and algorithms. Finally, we summarize the literature, discuss the open problems and suggest promising future research directions for IV methods and their applications. We also develop a toolkit of IVs methods reviewed in this survey at https://github.com/causal-machine-learning-lab/mliv.
translated by 谷歌翻译
在存在未衡量的混杂因素的情况下,我们解决了数据融合的治疗效应估计问题,即在不同的治疗分配机制下收集的多个数据集。例如,营销人员可以在不同时间/地点为相同产品分配不同的广告策略。为了处理由未衡量的混杂因素和数据融合引起的偏见,我们建议将观察数据分为多组(每个组具有独立治疗分配机制),然后将组指标显式地模拟为潜在的组仪器变量(LATGIV),将其模拟为实施基于IV的回归。在本文中,我们概念化了这种思想,并开发了一个统一的框架,以(1)估计跨群体观察到的变量的分布差异; (2)对不同治疗分配机制的LATGIV模型; (3)插入latgivs以估计治疗响应函数。经验结果证明了与最新方法相比,LATGIV的优势。
translated by 谷歌翻译
We are interested in estimating the effect of a treatment applied to individuals at multiple sites, where data is stored locally for each site. Due to privacy constraints, individual-level data cannot be shared across sites; the sites may also have heterogeneous populations and treatment assignment mechanisms. Motivated by these considerations, we develop federated methods to draw inference on the average treatment effects of combined data across sites. Our methods first compute summary statistics locally using propensity scores and then aggregate these statistics across sites to obtain point and variance estimators of average treatment effects. We show that these estimators are consistent and asymptotically normal. To achieve these asymptotic properties, we find that the aggregation schemes need to account for the heterogeneity in treatment assignments and in outcomes across sites. We demonstrate the validity of our federated methods through a comparative study of two large medical claims databases.
translated by 谷歌翻译
在本文中,我们研究了在一组单位上进行的设计实验的问题,例如在线市场中的用户或用户组,以多个时间段,例如数周或数月。这些实验特别有助于研究对当前和未来结果具有因果影响的治疗(瞬时和滞后的影响)。设计问题涉及在实验之前或期间选择每个单元的治疗时间,以便最精确地估计瞬间和滞后的效果,实验后。这种治疗决策的优化可以通过降低其样本尺寸要求,直接最小化实验的机会成本。优化是我们提供近最优解的NP-Hard整数程序,当时在开始时进行设计决策(固定样本大小设计)。接下来,我们研究允许在实验期间进行适应性决策的顺序实验,并且还可能早期停止实验,进一步降低其成本。然而,这些实验的顺序性质使设计阶段和估计阶段复杂化。我们提出了一种新的算法,PGAE,通过自适应地制造治疗决策,估算治疗效果和绘制有效的实验后推理来解决这些挑战。 PGAE将来自贝叶斯统计,动态编程和样品分裂的思想结合起来。使用来自多个域的真实数据集的合成实验,我们证明了与基准相比,我们的固定样本尺寸和顺序实验的提出解决方案将实验的机会成本降低了50%和70%。
translated by 谷歌翻译
Given the increasingly intricate forms of partial differential equations (PDEs) in physics and related fields, computationally solving PDEs without analytic solutions inevitably suffers from the trade-off between accuracy and efficiency. Recent advances in neural operators, a kind of mesh-independent neural-network-based PDE solvers, have suggested the dawn of overcoming this challenge. In this emerging direction, Koopman neural operator (KNO) is a representative demonstration and outperforms other state-of-the-art alternatives in terms of accuracy and efficiency. Here we present KoopmanLab, a self-contained and user-friendly PyTorch module of the Koopman neural operator family for solving partial differential equations. Beyond the original version of KNO, we develop multiple new variants of KNO based on different neural network architectures to improve the general applicability of our module. These variants are validated by mesh-independent and long-term prediction experiments implemented on representative PDEs (e.g., the Navier-Stokes equation and the Bateman-Burgers equation) and ERA5 (i.e., one of the largest high-resolution data sets of global-scale climate fields). These demonstrations suggest the potential of KoopmanLab to be considered in diverse applications of partial differential equations.
translated by 谷歌翻译
Temporal sentence grounding (TSG) aims to identify the temporal boundary of a specific segment from an untrimmed video by a sentence query. All existing works first utilize a sparse sampling strategy to extract a fixed number of video frames and then conduct multi-modal interactions with query sentence for reasoning. However, we argue that these methods have overlooked two indispensable issues: 1) Boundary-bias: The annotated target segment generally refers to two specific frames as corresponding start and end timestamps. The video downsampling process may lose these two frames and take the adjacent irrelevant frames as new boundaries. 2) Reasoning-bias: Such incorrect new boundary frames also lead to the reasoning bias during frame-query interaction, reducing the generalization ability of model. To alleviate above limitations, in this paper, we propose a novel Siamese Sampling and Reasoning Network (SSRN) for TSG, which introduces a siamese sampling mechanism to generate additional contextual frames to enrich and refine the new boundaries. Specifically, a reasoning strategy is developed to learn the inter-relationship among these frames and generate soft labels on boundaries for more accurate frame-query reasoning. Such mechanism is also able to supplement the absent consecutive visual semantics to the sampled sparse frames for fine-grained activity understanding. Extensive experiments demonstrate the effectiveness of SSRN on three challenging datasets.
translated by 谷歌翻译
Time-series anomaly detection is an important task and has been widely applied in the industry. Since manual data annotation is expensive and inefficient, most applications adopt unsupervised anomaly detection methods, but the results are usually sub-optimal and unsatisfactory to end customers. Weak supervision is a promising paradigm for obtaining considerable labels in a low-cost way, which enables the customers to label data by writing heuristic rules rather than annotating each instance individually. However, in the time-series domain, it is hard for people to write reasonable labeling functions as the time-series data is numerically continuous and difficult to be understood. In this paper, we propose a Label-Efficient Interactive Time-Series Anomaly Detection (LEIAD) system, which enables a user to improve the results of unsupervised anomaly detection by performing only a small amount of interactions with the system. To achieve this goal, the system integrates weak supervision and active learning collaboratively while generating labeling functions automatically using only a few labeled data. All of these techniques are complementary and can promote each other in a reinforced manner. We conduct experiments on three time-series anomaly detection datasets, demonstrating that the proposed system is superior to existing solutions in both weak supervision and active learning areas. Also, the system has been tested in a real scenario in industry to show its practicality.
translated by 谷歌翻译
This paper investigates the use of artificial neural networks (ANNs) to solve differential equations (DEs) and the construction of the loss function which meets both differential equation and its initial/boundary condition of a certain DE. In section 2, the loss function is generalized to $n^\text{th}$ order ordinary differential equation(ODE). Other methods of construction are examined in Section 3 and applied to three different models to assess their effectiveness.
translated by 谷歌翻译
Kernels are efficient in representing nonlocal dependence and they are widely used to design operators between function spaces. Thus, learning kernels in operators from data is an inverse problem of general interest. Due to the nonlocal dependence, the inverse problem can be severely ill-posed with a data-dependent singular inversion operator. The Bayesian approach overcomes the ill-posedness through a non-degenerate prior. However, a fixed non-degenerate prior leads to a divergent posterior mean when the observation noise becomes small, if the data induces a perturbation in the eigenspace of zero eigenvalues of the inversion operator. We introduce a data-adaptive prior to achieve a stable posterior whose mean always has a small noise limit. The data-adaptive prior's covariance is the inversion operator with a hyper-parameter selected adaptive to data by the L-curve method. Furthermore, we provide a detailed analysis on the computational practice of the data-adaptive prior, and demonstrate it on Toeplitz matrices and integral operators. Numerical tests show that a fixed prior can lead to a divergent posterior mean in the presence of any of the four types of errors: discretization error, model error, partial observation and wrong noise assumption. In contrast, the data-adaptive prior always attains posterior means with small noise limits.
translated by 谷歌翻译
Deep learning has been widely used for protein engineering. However, it is limited by the lack of sufficient experimental data to train an accurate model for predicting the functional fitness of high-order mutants. Here, we develop SESNet, a supervised deep-learning model to predict the fitness for protein mutants by leveraging both sequence and structure information, and exploiting attention mechanism. Our model integrates local evolutionary context from homologous sequences, the global evolutionary context encoding rich semantic from the universal protein sequence space and the structure information accounting for the microenvironment around each residue in a protein. We show that SESNet outperforms state-of-the-art models for predicting the sequence-function relationship on 26 deep mutational scanning datasets. More importantly, we propose a data augmentation strategy by leveraging the data from unsupervised models to pre-train our model. After that, our model can achieve strikingly high accuracy in prediction of the fitness of protein mutants, especially for the higher order variants (> 4 mutation sites), when finetuned by using only a small number of experimental mutation data (<50). The strategy proposed is of great practical value as the required experimental effort, i.e., producing a few tens of experimental mutation data on a given protein, is generally affordable by an ordinary biochemical group and can be applied on almost any protein.
translated by 谷歌翻译